

Roadmap Design for Thorium-Uranium Breeding Recycle in PWR

Si Shengyi

Shanghai Nuclear Engineering Research and Design Institute Shanghai, China 2009.10

- 1. Introduction
- 2. Insights to the Inherence of Thorium-based Fuel in PWR
- 3. Calculation Results Evaluation for Thorium-based PWR Fuel Assembly
- 4. Roadmap to Approach Thorium-Uranium Breeding Recycle in PWR

- The paper is focusing on designing a roadmap to finally approach sustainable Thorium-Uranium (²³²Th-²³³U) Breeding Recycle in current PWR,
- without any other change to the fuel lattice and the core internals,
- but substituting the UOX pellet with thorium-based pellet.

◆ Nuclear reaction for Thorium-Uranium (²³²Th-²³³U) cycle

$$\int_{90}^{232} Th + {}_{0}^{1}n \rightarrow {}_{90}^{233} Th + \gamma$$

$$\sum_{\substack{233\\90}}^{233} Th \frac{\beta^{-}}{22\min} \rightarrow {}_{91}^{233} Pa \frac{\beta^{-}}{27day} \rightarrow {}_{92}^{233} U + {}_{0}^{1}n \rightarrow FPs + \sim 2.30{}_{0}^{1}n$$

♦ the performance of the Thorium-based fuel in reactor core is strongly dependent on the synthetical performance of each isotope, in this transmutation process, especially ²³²Th and ²³³U

- The fission performance of ²³³U is quite excellent ;
- the η of ²³³U is bigger than the η of ²³⁵U and ²³⁹Pu within a quite wide energy span from thermal to epithermal energy region;
- This is the well-known evidence that Thorium-based fuel can achieve higher conversion ration or even breeding in thermal reactor

it is emphasized here that the excellent fission performance of ²³³U does not only exist in thermal energy group but also epithermal or even beyond epithermal energy group (vs. ²³⁵U)

 conversion or breeding ratio (CBR) for Thorium-Uranium (²³²Th-²³³U) cycle can be expressed as follows:

$$CBR(t) = \frac{\int N^{Th232}(t)\sigma_c^{Th232}(E)\phi(E,t)dE}{\int N^{U233}(t)\sigma_a^{U233}(E)\phi(E,t)dE} = \frac{N^{Th232}(t)\int\sigma_c^{Th232}(E)\phi(E,t)dE}{N^{U233}(t)\int\sigma_a^{U233}(E)\phi(E,t)dE}$$

The above formula indicates that the conversion or breeding ratio is dependent on the number densities of ²³²Th and ²³³U, the neutron spectra in the fuel lattice, the ²³²Th capture cross section and ²³³U absorption cross section vs. neutron energy

- The neutron spectra in fuel lattice are strongly dependent on the core type, such as thermal reactor or fast reactor;
- But, for a typical PWR core, the neutron spectra is almost constant
- Right Figure illustrated the spectra of a PWR fuel lattice at BOL, MOL and EOL respectively.
- We can see that the variation of the spectra during lifetime is almost neglectable

- CBR(t) has an implicit relation with the ratio of ²³²Th capture cross section to ²³³U absorption cross section ;
- The ratio is only dependent on the inherence of these two nuclides and independent to any core type ;
- Right Figure illustrated the ratio of σ_c^{Th232} to σ_a^{U233} vs. neutron energy;
- It can be seen that the ratio of σ_c^{Th232} to σ_a^{U233} around thermal group is far smaller than the ratio around epithermal group.

$$CBR(t) = \frac{N^{Th232}(t) \int \sigma_c^{Th232}(E) \phi(E,t) dE}{N^{U233}(t) \int \sigma_a^{U233}(E) \phi(E,t) dE}$$

Deductions from the above insights

- The conversion of ²³²Th to ²³³U in Thorium-based fuel is mainly dominated by epithermal neutrons;
- The hardener neutron spectra in thermal reactor is beneficial to improve the conversion or breeding ratio in Thorium-based fuel;
- The design of pure Thorium fuel rod in moderator region is not a good choice from the viewpoint of isotopes conversion in Thorium-based fuel; the design of thorium blended with other fissile seeds (such as ²³³U, ²³⁵U or ²³⁹Pu) is beneficial to enhance the conversion or breeding ratio in Thorium-based fuel.

工程研究设

• <u>Conversion or Breeding Performance Index (CBPI)</u> for a given fuel lattice is a constant

$$CBPI = \frac{\int \sigma_{c}^{Th232}(E)\phi(E,t)dE}{\int \sigma_{a}^{U233}(E)\phi(E,t)dE}, \quad then \quad CBR(t) = CBPI \cdot \frac{N^{Th232}(t)}{N^{U233}(t)}$$

 CBR(t) =1 means the inventory of fissile isotope is in a state of quasiequivalence, i.e.

$$1 = CBPI \cdot \frac{N^{Th232}(t)}{N^{U233}(t)}, \quad or \quad \frac{N^{U233}(t)}{N^{Th232}(t)} = CBPI$$

Prerequisite to achieve quasi-equilibrium state for Thorium-based fuel is that the ratio of ²³³U inventory to ²³²Th inventory must be equal to the CBPI of the fuel lattice; For the typical PWR fuel lattice, calculation result shows that the CBPI is around 0.02

2009年11月3日星期二

Deductions from the above insights

- The prerequisite for Thorium-Uranium fuel breeding cycle is that the ratio of ²³³U inventory to ²³²Th inventory must be less CBPI (~0.02), otherwise, the CBR(t) should be less than 1, it is impossible to maintain sustainable fuel cycle;
- For the Thorium-based fuel using ²³³U as seeds, if the ratio of ²³³U inventory to ²³²Th inventory is greater than CBPI (typically 0.02, most of other authors used 0.04~0.05 for PWR), the fuel system could not achieve breeding, the extra ²³³U is mainly contributing fission energy;
- For the Thorium-based fuel using other fissile isotopes (such as ²³⁵U or ²³⁹Pu) as seeds, since the initial ²³³U inventory is almost zero, the CBR(t) will be much bigger than 1 at early stage, then CBR(t) will approach 1 along with the burnup accumulated, and the maximum ²³³U inventory will be the product of CBPI and instant ²³²Th inventory;
- As the purity of the seeds is varied evidently, e.g. most of the composition in MEU is ²³⁸U or there are some non-fissile isotopes in reactor-grade Plutonium, for a given fuel lattice, the initial ²³²Th inventory shall be varied a lot, and then the final ²³³U inventory will be also quite different.

上海核工程研究设计院

2009年11月3日星期二

Discrete and Integral Thorium-	Item
based fuel;	System
 The calculation in this paper is focusing on Integral Thorium- 	Moderat
based fuel;	Soluble
♦ Right table listed the main lattice	Specific
parameters of a typical 17x17 PWR fuel assembly, which is the	Assemb
basic database in our calculation.	Active h
The lattice code used in our calculation is DRAGON 3.06	Fuel rod
◆ The library to DRAGON here is	Fuel rod
IAEA version of WLUP format	Claddin
microscopic cross-section library	Pellet di

Item	Parameter
System Pressure, MPa	15.5
Moderator temperature, °C	302.0
Soluble Boron, ppm	500.0
Specific Power, Kw/Kg	38.0
Assembly Pitch, cm	21.5
Active height, cm	364.0
Fuel rod pitch, cm	1.26
Fuel rod diameter, cm	0.95
Cladding thickness, cm	0.057
Pellet diameter, cm	0.8192

Examined cases in this paper

Extraction from the above table					
	Ref. Case	Case A	Case B	Case C	Case D
²³³ U mass density,g/cm ³		0.027	0.035	0.039	0.041
²³³ U/U, w/o		2.45	6.44	87.32	61.30
Pu mass density, g/cm ³	0.038	0.021	0.013	0.084	0.001
MA mass density, g/cm ³	~0.009	~0.006	~0.005	~0.016	~0.0002

- MEU(Case A and B): less yield, quite low enrichment, Pu and MA equivalent to Ref. case, not a good seed;
- Reactor-grade Plutonium (Case C): higher yield, highest purity ²³³U, highest Pu and MA yield;
- Reactor-grade ²³³U (Case D): appropriate yield and purity, lowest Pu and MA

2009年11月3日星期二

: 11

		1.2		12
		Case F. (U† Th) 002+Th02,0 2.5 1002, FU/U=89.5w/o	Case F,(U+Th)O ₂ * 2.0%UO ₂ ,FU/U=89.5w/o	Case G,(U+Th)O ₂ * 1.5%UO ₂ ,FU/U=89.5w/o
	Th	²³ @Th=2.399 g/cm ³ (100w/o)	232 Th=2.411 g/cm ³ (100w/o)	232 Th=2.423 g/cm ³ (100w/o)
Initial, 0 GWD/tHM	U	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	$\begin{array}{c} 102 + Th027 \text{,} \text{,} \text{,} \text{,} \text{,} \text{,} \text{,} \text{,}$	$\begin{array}{r} \begin{array}{r} & \begin{array}{r} 232 U=0.0000 \text{ g/cm}^3 \ (0.45 \text{w/o}) \\ \hline 233 II=0.0325 \text{ g/em}^3 \ (87.32 \text{w/o}) \\ \hline 234 U=0.0037 \text{ g/em}^3 \ (9.92 \text{w/o}) \\ \hline 235 U=0.0008 \text{ g/em}^3 \ (2.16 \text{w/o}) \\ \hline 236 U=0.0001 \text{ g/cm}^3 \ (0.15 \text{w/o}) \\ \hline 237 U=0.0009 \text{ g/cm}^3 \ (0.00 \text{w/o}) \\ \hline 238 U=0.0000 \text{ g/cm}^3 \ (0.00 \text{w/o}) \\ \hline 0.0371 \text{ g/cm}^3 \end{array}$
	Th	²³² Th=2.302 g/cm3 (100w/o)	²³² Th=2.304 g/cm3 (100w/o)	²³² Th=2.306 g/cm3 (100w/o)
Final, 40GWD/tHM	U	$\begin{array}{c} 2.5\% UO2 + ThO2, CE \\ \hline 232 U = 0.0002 \text{ g/cm}^3 (0.28 \text{ w/o}) \\ \hline 233 U = 0.0378 \text{ g/cm}^3 (69.86 \text{ w/o}) \\ \hline 234 U = 0.0124 \text{ g/cm}^3 (22.97 \text{ w/o}) \\ \hline 235 U = 0.0029 \text{ g/cm}^3 (5.35 \text{ w/o}) \\ \hline 236 U = 0.0008 \text{ g/cm}^3 (1.55 \text{ w/o}) \\ \hline 237 U = 0.0000 \text{ g/cm}^3 (0.00 \text{ w/o}) \\ \hline 238 U = 0.0000 \text{ g/cm}^3 (0.00 \text{ w/o}) \\ \hline 0.0541 \text{ g/cm}^3 \end{array}$	$\frac{232}{15000} = 0.0002 \text{ g/cm}^3 (0.31 \text{ w/o}) \\ 233}{1200026} = 0.0365 \text{ g/cm}^3 (70.72 \text{ w/o}) \\ 15000 = 234}{1200026} = 0.0115 \text{ g/cm}^3 (22.32 \text{ w/o}) \\ 235}{1200026} = 0.0026 \text{ g/cm}^3 (22.32 \text{ w/o}) \\ 235}{1200026} = 0.0008 \text{ g/cm}^3 (5.12 \text{ w/o}) \\ 230}{120026} = 0.0008 \text{ g/cm}^3 (1.53 \text{ w/o}) \\ 237}{1200026} = 0.0000 \text{ g/cm}^3 (0.00 \text{ w/o}) \\ 238}{1200026} = 0.0000 \text{ g/cm}^3 (0.00 \text{ w/o}) \\ 0.0516 \text{ g/cm}^3 \end{bmatrix}$	$\begin{array}{c} 2^{32}\text{U=0.0002 g/cm^{3}} (0.33 \text{ w/o}) \\ 2^{33}\text{U=0.0357 g/cm^{3}} (71.72\text{w/o}) \\ 3^{234}\text{U=0.0108 g/cm^{3}} (21.61\text{w/o}) \\ 2^{35}\text{U=0.0024 g/cm^{3}} (4.87\text{w/o}) \\ 2^{36}\text{U=0.0007 g/cm^{3}} (1.46\text{w/o}) \\ 2^{37}\text{U=0.0000 g/cm^{3}} (0.00\text{w/o}) \\ 2^{38}\text{U=0.0000 g/cm^{3}} (0.00\text{w/o}) \\ 0.0497 \text{-g/cm^{3}} \end{array}$
200	9年1	1月3日星期二 上。	海核工程研究设计院 HAI NUCLEAR ENGINEERING RESEARCH & DESIGN INSTITUTE	

- Case A, B, C, D indicate that reactor-grade ²³³U is the best seeds for Thorium-Uranium fuel cycle
- Case E, F, G indicate that Thorium-Uranium fuel cycle using reactor-grade ²³³U can achieve breeding;
- ◆ Case R1, R2, R3 indicate that the sustainable Thorium-Uranium Breeding Recycle is approachable

- All above calculation results demonstrated that it is possible to approach sustainable Thorium-Uranium Breeding Recycle in current PWR fuel lattice so long as the ingredient of fuel pellet is well designed.
- It is a pity that the K-infinite of the Thorium-based fuel at this condition is always smaller than 1 and impossible to maintain the critical core if the core is fully loaded with Thorium-based fuel.
- Fortunately, after comparing the reactivity of this Thorium-based fuel with those fuel assemblies loaded on the periphery of Lowleakage Long cycle PWR core, we found that the reactivity is equivalent.
- That means we can substitute those highly burnt UOX fuel assemblies with well-designed Thorium-based fuel assemblies on the periphery of current PWR core and get a mixed core design

The Mixed core has following advantages:

- Just like that in Fast Breeder reactor, a blanket region is established, where extra ²³³U may be bred and sustainable Thorium-Uranium Breeding Recycle may be maintained;
- Approximately 30% UOX fuel assemblies may be saved;
- Low-leakage core is naturally composed, as the reactivity of Thoriumbased fuel is always lower;
- Longer cycle lifetime may be achieved, as the reactivity change of Thorium-based fuel vs. burnup is very small;
- The core characteristics, especially the dynamics, are still dominated by UOX fuel, because the most reactive region of the core is still occupied by UOX fuels
- Without any other change to the fuel lattice and the core internals, but substituting the UOX pellet with thorium-based pellet

Roadmap for Thorium-Uranium Recycle in PWR

- The lattice code used in this paper is DRAGON 3.06,
- The library used for DRAGON is IAEA version of WLUP format microscopic cross-section library.
- The author is highly appreciating the originators of above products.

THANKS FOR YOUR ATTENTION

